Abstract

Transport measurements down to 50 mK have been performed on independently contacted electron–hole bilayers (EHBL) with a 10 nm barrier, close to the excitonic Bohr radius of the system ( ∼ 12 nm ). Coulomb drag measured reveals a departure from that expected for two Fermi liquids, exhibiting an upturn that may be followed by a downturn or even a sign-reversal at the lowest temperatures. Concurrently an insulating state in the single-layer resistivities has been found for low sheet resistances ( ρ ≪ h / e 2 ), well away from where the metal–insulator transition has been previously observed in two-dimensional systems. We can unambiguously show that this insulating state is caused by the interlayer interaction, as opposed to disorder. We consider the possibility of excitonic and collective mode driven phases that have been anticipated in EHBLs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.