Abstract

SUMMARYSeismic tomography is a cornerstone of geophysics and has led to a number of important discoveries about the interior of the Earth. However, seismic tomography remains plagued by the large number of unknown parameters in most tomographic applications. This leads to the inverse problem being underdetermined and requiring significant non-geologically motivated smoothing in order to achieve unique answers. Although this solution is acceptable when using tomography as an explorative tool in discovery mode, it presents a significant problem to use of tomography in distinguishing between acceptable geological models or in estimating geologically relevant parameters since typically none of the geological models considered are fit by the tomographic results, even when uncertainties are accounted for. To address this challenge, when seismic tomography is to be used for geological model selection or parameter estimation purposes, we advocate that the tomography can be explicitly parametrized in terms of the geological models being tested instead of using more mathematically convenient formulations like voxels, splines or spherical harmonics. Our proposition has a number of technical difficulties associated with it, with some of the most important ones being the move from a linear to a non-linear inverse problem, the need to choose a geological parametrization that fits each specific problem and is commensurate with the expected data quality and structure, and the need to use a supporting framework to identify which model is preferred by the tomographic data. In this contribution, we introduce geological parametrization of tomography with a few simple synthetic examples applied to imaging sedimentary basins and subduction zones, and one real-world example of inferring basin and crustal properties across the continental United States. We explain the challenges in moving towards more realistic examples, and discuss the main technical difficulties and how they may be overcome. Although it may take a number of years for the scientific program suggested here to reach maturity, it is necessary to take steps in this direction if seismic tomography is to develop from a tool for discovering plausible structures to one in which distinct scientific inferences can be made regarding the presence or absence of structures and their physical characteristics.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.