Abstract
We have recently presented an initial study of evolutionary algorithms used to design vertical-axis wind turbines (VAWTs) wherein candidate prototypes are evaluated under approximated wind tunnel conditions after being physically instantiated by a 3D printer. That is, unlike other approaches such as computational fluid dynamics simulations, no mathematical formulations are used and no model assumptions are made. However, the representation used significantly restricted the range of morphologies explored. In this paper, we present initial explorations into the use of a simple generative encoding, known as Gielis superformula, that produces a highly flexible 3D shape representation to design VAWT. First, the target-based evolution of 3D artefacts is investigated and subsequently initial design experiments are performed wherein each VAWT candidate is physically instantiated and evaluated under approximated wind tunnel conditions. It is shown possible to produce very closely matching designs of a number of 3D objects through the evolution of supershapes produced by Gielis superformula. Moreover, it is shown possible to use artificial physical evolution to identify novel and increasingly efficient supershape VAWT designs.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.