Abstract

Catalytic reduction in water is a potential alternative to replace current available techniques, such as adsorption or ion-exchange, for the efficient treatment of perchlorate contaminated waters. However, the development of an efficient catalytic system has been hindered by the perchlorate’s very stable tetrahedral structure. This work aims to obtain an efficient catalytic system to degrade perchlorate in contaminated water at natural pH and mild operation conditions by optimizing the design of a supported catalyst. To this end, different metal combinations, using Pt, Pd, and Ru in combination with Re were tested. The most active metallic pairing (Re/Pt) was then used in a systematic study to optimize its composition. An optimal composition that promotes the formation of coordinated Re/Pt species was established. This facilitates the interaction of perchlorate with spilled-over hydrogen, consequently resulting in improved reaction rates above those reported elsewhere. The stability of the catalytic system was demonstrated in reutilization experiments under anoxic atmosphere. SynopsisA systematic catalyst development study allows the rational design of a catalytic system to effectively remove perchlorate, a very stable water contaminant, from water.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call