Abstract

Dengue Virus (DENV) is a mosquito-borne virus that is prevalent in the world's tropical and subtropical regions. Therefore, early detection and surveillance can help in the management of this disease. Current diagnostic methods rely primarily on ELISA, PCR, and RT-PCR, among others, which can only be performed in specialized laboratories and require sophisticated instruments and technical expertise. CRISPR-based technologies on the other hand have field-deployable viral diagnostics capabilities that could be used in the development of point-of-care molecular diagnostics. The first step in the field of CRISPR-based virus diagnosis is to design and screen gRNAs for high efficiency and specificity. In the present study, we employed a bioinformatics approach to design and screen DENV CRISPR/Cas13 gRNAs for conserved and serotype-specific variable genomic regions in the DENV genome. We identified one gRNA sequence specific for each of the lncRNA and NS5 regions and identified one gRNA against each of DENV1, DENV2, DENV3, and DENV4 to distinguish the four DENV serotypes. These CRISPR/Cas13 gRNA sequences will be useful in diagnosing the dengue virus and its serotypes for in vitro validation and diagnostics.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call