Abstract

Ongoing research effort is dedicated to the development of innovative, superior and cost-effective ground improvement techniques to mitigate natural and man-made hazards while minimising waste and other environmental impacts. In this context, the nature-based process of biocementation of soils has been proposed as a potentially more sustainable technique than conventional chemical ground improvement practices. This paper focuses on the biocementation of an organic soil of the UK railway network. Having recently proven the feasibility of biocementing this soil using indigenous ureolytic bacteria, in this paper, the authors perform a parametric study to identify treatments successful in increasing the strength of the soil. Selected treatments are then applied to the soil to assess its volume change during consolidation, secondary compression and shrinkage upon drying. The results show that, depending on the treatments used, biocementation has increased the unconfined compressive strength by up to 81% compared to that of the control samples. For selected treatments and the range of water contents tested (55–33%), shrinkage upon drying reduced by 16%, while the volumetric strains of the soil upon 1-D compression reduced by 32–47%. This was reflected in the values of the coefficient of volume compressibility and the coefficient of secondary compression (the latter either reduced by up to an order of magnitude or secondary compression was not observed altogether in the testing period). Overall, the results proved that biocementation improved considerably the mechanical properties of the organic soil, which gives promise for addressing the settlement problems of this soil.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.