Abstract

Large, highly flexible wind turbines of the new generation will make designers face un-precedent challenges, mainly connected to their huge dimensions. To tackle these challenges, it is commonly acknowledged that design tools must evolve in the direction of both improving their accuracy and turning into holistic, multiphysics tools. Furthermore, the wind turbine industry is reaching a high level of maturity, and ever more accurate and reliable design tools are required to further optimise these machines. Within this framework, the study shows the development of an integrated platform for blade design integrating 3D CFD flow simulations and 3D-FEM structural analysis. Artificial intelligence techniques are applied to develop an optimization procedure based on the proposed tool. The potential of the new platform has been tested on the well-known test case of the MEXICO rotor, for which an optimization of the blade design has been carried out. Exploring a design space sampled with 2000 CFD and FEM computations, increases in blade torque have been obtained at each of the three tip-speed ratios (TSR) investigated, ranging from 6% at the nominal TSR to 14% at the lowest one, while stresses on the blade are kept almost unaltered.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.