Abstract

A promising method for diabetes treatment is the implantation of immunoisolated cells secreting insulin in response to glucose. Cell availability limits the application of this approach at a medically-relevant scale. We explore the use of transformed cells that can be grown to large homogeneous populations in developing artificial pancreatic tissues. We also investigate the use of NMR in evaluating, non-invasively, cellular bioenergetics in the tissue environment. The system employed in this study consisted of mouse insulinoma beta TC3 cells entrapped in calcium alginate/poly-L-lysine (PPL)/alginate beads. The PPL layer imposed a molecular weight cutoff of approximately 60 kDa, allowing nutrients and insulin to diffuse through but excluding high molecular weight antibodies and cytotoxic cells of the host. We fabricated a radiofrequency coil that can be double-tuned to 1H and 31P, and an NMR-compatible perfusion bioreactor and support circuit that can maintain cells viable during prolonged studies. The bioreactor operated differentially, was macroscopically homogeneous and allowed the acquisitions of 1H images and 31P NMR spectra in reasonable time intervals. Results indicated that entrapment had little effect on cell viability; that insulin secretion from beads was responsive to glucose; and that the bioenergetics of perfused, entrapped cells were not grossly different from those of cells never subjected to the immobilization procedure. These findings offer promise for developing an artificial pancreatic tissue for diabetes treatment based on continuous cell lines.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.