Abstract
Despite the proven capability of synthetic-jet actuators in delaying boundary-layer separation in laboratory experiments, a capability that allows the geometry and operating conditions of these devices to be designed and selected for maximum flow-control effectiveness in full-scale flight conditions has yet to be developed. In this two-part paper, the key results obtained during a 3-year research programme aiming at establishing such a capability based on a better understanding of the fluid mechanics of synthetic jets and an improved modelling capacity are reported. In Part 1 of this paper, the experimental studies of the behaviour of synthetic jets in both quiescent flow and a boundary layer are described. The work has led to an improved understanding of the dimensionless parameters that determine the formation and development of vortex rollup and how the strength of rollup can be enhanced by optimizing the geometry and operating condition. Based on the study of the nature of vortical structures produced as the result of the interaction with a boundary layer and their impact in the near-wall region where flow control is desired, the conditions for producing effective vortical structures for delaying flow separation were established. The finding from this work forms the basis of a number of criteria used for designing synthetic jet actuators for full-scale flight condition to be presented in Part 2.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.