Abstract

A computational approach to simulate the formation of possible imprinted polymers in acetonitrile solution for theophylline (THO) is proposed, using combined molecular dynamics (MD), molecular mechanics (MM), docking and site mapping computational techniques. Methacrylic acid (MAA) and methylmethacrylate (MMA) monomers are used to simulate possible homo and copolymer structures. The model is able predict binding affinity and selectivity when considering THO analogues, such as caffeine, theobromine, xanthine and 3-methylxanthine. Comparison with available experimental data is proposed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.