Abstract
We show that under reasonable assumptions there exist Riemann mappings which are as hard as tally $\sharp$-P even in the non-uniform case. More precisely, we show that under a widely accepted conjecture from numerical mathematics there exist single domains with simple, i.e. polynomial time computable, smooth boundary whose Riemann mapping is polynomial time computable if and only if tally $\sharp$-P equals P. Additionally, we give similar results without any assumptions using tally $UP$ instead of $\sharp$-P and show that Riemann mappings of domains with polynomial time computable analytic boundaries are polynomial time computable.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.