Abstract

Embedded electronic systems are finding increased applications in our daily life. In order to meet the application demands in embedded systems, parallel computing is used. This paper emphasizes teaching of the specific issues of parallel computing that are critical to embedded systems. We propose an analytical approach to deliver declarative and functioning knowledge for learning in the field of computer science and engineering with a special focus on Embedded Parallel Computing (EPC). We describe the teaching of a course with a focus on how parallel computing can be used to enhance performance and improve energy efficiency of embedded systems. The teaching methods include interactive lectures with web-based course literature, seminars, and lab exercises and home-assigned practical tasks. Further, the course is intended to give a general insight into current research and development in regard to parallel architectures and computation models. Since the course is an advanced level course, the students are expected to have a basic knowledge about the fundamentals of computer architecture and their common programming methodologies. The course puts emphasis on hands-on experience with embedded parallel computing. Therefore it includes an extensive laboratory and project part, in which a state of the art manycore embedded computing system is used. We believe that undertaking these methods in succession will prepare the students for both research as well as professional career.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call