Abstract

Since electrospinning can generate micro- to nanometre-scale fibres, it is widely used for fabricating wound dressings. Electrospun scaffolds with defined three-dimensional patterns at the mat surface can be efficiently fabricated using textured collectors that transfer the topography during the manufacturing process. However, the efficacy of surface pattern transfer from the collector to the mat, the correlation between the topography and the absorption capability and the effect of sterilisation on absorption have not yet been analysed. In this study, textured patterns were imprinted over polycaprolactone electrospun mats using textured collectors. The successful transferability of the patterns was quantified through height, hybrid and functional surface topography parameters. Additionally, ethylene oxide, hydrogen peroxide (H2O2) and ultraviolet (UV) sterilisation methods were tested, of which only UV preserved the morphological and functional integrity of the mat. Finally, fibroblasts were used to analyse the cytotoxicity and cellular response of the dressings, verifying their biocompatible nature. This study demonstrates that absorption capacity can be modulated by the surface texture of the wound dressing. The S dq and S dr parameters were identified as key surface characteristics for enhancing absorption capacity and yielded an increase of up to 176.76% compared with the non-textured control, thus revealing the potential of surface functionalisation for increasing exudate absorption.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.