Abstract

Model transformation is a key technique to automate software engineering tasks, such as generating implementations of software systems from higher-level models. To enable this automation, transformation engines are used to synthesize various types of software artifacts from models, where the rules according to which these artifacts are generated are implemented by means of dedicated model transformation languages. Hence, the quality of the generated software artifacts depends on the quality of the transformation rules applied to generate them. Thus, there is the need for approaches to certify their behavior for a selected set of test models. As mutation analysis has proven useful as a practical testing approach, we propose a set of mutation operators for the ATLAS Transformation Language (ATL) derived by a comprehensive language-centric synthesis approach. We describe the rationale behind each of the mutation operators and propose an automated process to generate mutants for ATL transformations based on a combination of generic mutation operators and higher-order transformations. Finally, we describe a cost-effective solution for executing the obtained mutants.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.