Abstract

Key messageManaging forest residues according to the carbon content of the soil helps to minimize the ecological footprint of their removal.ContextIn Mediterranean mountain ecosystems, unsustainable harvesting of wood residues might contribute to land degradation, carbon, and nutrient depletion in forest soils.AimsThis study aimed to assess the amount of forest biomass residues that should be left on-site to minimize the depletion of soil fertility.MethodsWe estimated the availability of biomass residues in the public forest land of the Basilicata region of Southern Italy by collecting stand-scale inventory attributes from forest management plans. Subsequently, we quantified the amount of forest biomass residue released by implementing a scenario-based approach.ResultsApproximately 5800 m3 year−1 of forest residues could be potentially available for bio-based industries at the regional scale within the next 10 years. Such residues mainly belong to broadleaved forest types, having a high variability in their soil organic stock (228.5–705.8 Mg C ha−1) and altitudinally spanning from 400 to 1500 m a.s.l. In these forests, the simulated scenarios displayed a wide range of average harvestable residues from 2.5 to 5.5 m3 ha−1, containing approximately 1.1 to 2.1 Mg ha−1 of organic carbon.ConclusionOur study suggests that forest management plans are a useful source of information to estimate the available forest biomass residues consistently. In southern Mediterranean mountain forests, the management of forest residues according to soil carbon content helps to minimize the environmental impact and increase their sustainability.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call