Abstract

The surface diffusion potential landscape plays an essential role in a number of physical and chemical processes such as self-assembly and catalysis. Diffusion energy barriers can be calculated theoretically for simple systems, but there is currently no experimental technique to systematically measure them on the relevant atomic length scale. Here, we introduce an atomic force microscopy based method to semiquantitatively map the surface diffusion potential on an atomic length scale. In this proof of concept experiment, we show that the atomic force microscope damping signal at constant frequency-shift can be linked to nonconservative processes associated with the lowering of energy barriers and compared with calculated single-atom diffusion energy barriers.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.