Abstract

Conventionally, an approximate accelerator replaces every invocation of a frequently executed region of code without considering the final quality degradation. However, there is a vast decision space in which each invocation can either be delegated to the accelerator---improving performance and efficiency--or run on the precise core---maintaining quality. In this paper we introduce M ithra , a co-designed hardware-software solution, that navigates these tradeoffs to deliver high performance and efficiency while lowering the final quality loss. M ithra seeks to identify whether each individual accelerator invocation will lead to an undesirable quality loss and, if so, directs the processor to run the original precise code. This identification is cast as a binary classification task that requires a cohesive co-design of hardware and software. The hardware component performs the classification at runtime and exposes a knob to the software mechanism to control quality tradeoffs. The software tunes this knob by solving a statistical optimization problem that maximizes benefits from approximation while providing statistical guarantees that final quality level will be met with high confidence. The software uses this knob to tune and train the hardware classifiers. We devise two distinct hardware classifiers, one table-based and one neural network based. To understand the efficacy of these mechanisms, we compare them with an ideal, but infeasible design, the oracle. Results show that, with 95% confidence the table-based design can restrict the final output quality loss to 5% for 90% of unseen input sets while providing 2.5× speedup and 2.6× energy efficiency. The neural design shows similar speedup however, improves the efficiency by 13%. Compared to the table-based design, the oracle improves speedup by 26% and efficiency by 36%. These results show that M ithra performs within a close range of the oracle and can effectively navigate the quality tradeoffs in approximate acceleration.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call