Abstract

Recent advances in nanophotonics have brought about coherent light sources with chaotic circular polarization; a low-dimensional chaotic evolution of optical spin was evidenced in laser diodes. Here we propose a mechanism that gives rise to light with a spatiotemporal spin chaos resembling turbulent states in hydrodynamics. The spin-chaotic radiation is emitted by exciton polaritons under resonant optical pumping in arbitrarily sized planar microcavities, including, as a limiting case, pointlike systems with only three degrees of freedom. The underlying mechanism originates in the interplay between spin symmetry breakdown and scattering into pairs of Bogolyubov excitations. As a practical matter, it opens up the way for spin modulation of light on the scale of picoseconds and micrometers.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call