Abstract

In the last few years, simultaneous localization and mapping became an important topic of research in the robotics community. This article proposes an approach for autonomous navigation of mobile robots in faulty situations. The main objective is to extend the fault tolerance strategy to simultaneous localization and mapping in presence of sensor faults or software faults in the data fusion process. Fault detection and isolation technique is performed based on duplicationโ€“comparison method and structured residuals. The proposed fault tolerance approach is based on the extended Kalman filter for simultaneous localization and mapping when an absolute localization sensor is available. The validation of the proposed approach and the extended Kalman filter for simultaneous localization and mapping algorithm is performed from experiments employing an omnidrive mobile robot, equipped with embedded sensors, namely: wheel encoders, gyroscope, two laser rangefinders and external sensor for the absolute position (indoor global positioning system). The obtained results demonstrate the effectiveness of the proposed approach where it was found that its fault tolerance performance is based essentially on the selected residuals and the values of the fault detection thresholds to be used for the fault detection and isolation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.