Abstract

This paper proposes a framework for solving constraint problems with reinforcement learning (RL) and sequence-tosequence recurrent neural networks. We approach constraint solving as a declarative machine learning problem, where for a variable-length input sequence a variable-length output sequence has to be predicted. Using randomly generated instances and the number of constraint violations as a reward function, a problem-specific RL agent is trained to solve the problem. The predicted solution candidate of the RL agent is verified and repaired by CBLS to ensure solutions, that satisfy the constraint model. We introduce the framework and its components and discuss early results and future applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.