Abstract
Astronauts are at risk for pneumothorax, a condition where injury or disease introduces air between the chest wall and the lungs (i.e., the pleural cavity). In a worst-case scenario, it can rapidly lead to a fatality if left unmanaged and will require prompt treatment in situ if developed during spaceflight. Chest tube insertion is the definitive treatment for pneumothorax, but it requires a high level of skill and frequent practice for safe use. Physician astronauts may struggle to maintain this skill on medium- and long-duration exploration-class missions, and it is inappropriate for pure just-in-time learning or skill refreshment paradigms. This paper proposes semi-automating tool insertion to reduce the risk of complications in austere environments and describes preliminary experiments providing initial validation of an intelligent prototype system. Specifically, we showcase and analyse motion and force recordings from a sensorized percutaneous access needle inserted repeatedly into an ex vivo tissue phantom, along with relevant physiological data simultaneously recorded from the operator. When coupled with minimal just-in-time training and/or augmented reality guidance, the proposed system may enable non-expert operators to safely perform emergency chest tube insertion without the use of ground resources.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.