Abstract

Cloud computing empowers enterprises to efficiently manage big data and discovery of useful information which are the most fundamental challenges for big data enabled applications. The cloud offered unlimited resources that can store, manage and analyze massive and heterogeneous data to improve the quality assurance of application services. Nevertheless, cloud computing is exposed to enormous external and internal privacy breaches and leakage threats. In this paper, we introduce a privacy-preserving distributed analytics framework for big data in cloud. Fully Homomorphic Encryption (FHE) is used as an emerging and powerful cryptosystem that can carry out analysis tasks on encrypted data. The developed distributed approach has the scalability to partition both data and analysis computations into subset cloud computing nodes that can be run independently. This rapidly accelerates the performance of encrypted data processing while preserving a high level of analysis accuracy. Our experimental evaluation demonstrates the efficiency of the proposed framework, in terms of both analysis performance and accuracy, for building a secure analytics cloud-enabled application.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.