Abstract
Non-invasive multi-scale and multimodal 3D characterization of heterogeneous or hierarchically structured intact mesoscale samples is of paramount importance in tackling challenging scientific problems. Scanning hard X-ray tomography techniques providing simultaneous complementary 3D information are ideally suited to such studies. However, the implementation of a robust on-site workflow remains the bottleneck for the widespread application of these powerful multimodal tomography methods. In this paper, we describe the development and implementation of such a robust, holistic workflow, including semi-automatic data reconstruction. Due to its flexibility, our approach is especially well suited for on-the-fly tuning of the experiments to study features of interest progressively at different length scales. To demonstrate the performance of the method, we studied, across multiple length scales, the elemental abundances and morphology of two complex biological systems, Arabidopsis plant seeds and mouse renal papilla samples. The proposed approach opens the way towards routine multimodal 3D characterization of intact samples by providing relevant information from pertinent sample regions in a wide range of scientific fields such as biology, geology, and material sciences.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.