Abstract

Deep learning (DL) has recently been widely applied to diverse source code processing tasks in the software engineering (SE) community, which achieves competitive performance (e.g., accuracy). However, the robustness, which requires the model to produce consistent decisions given minorly perturbed code inputs, still lacks systematic investigation as an important quality indicator. This article initiates an early step and proposes a framework CARROT for robustness detection, measurement, and enhancement of DL models for source code processing. We first propose an optimization-based attack technique CARROT A to generate valid adversarial source code examples effectively and efficiently. Based on this, we define the robustness metrics and propose robustness measurement toolkit CARROT M , which employs the worst-case performance approximation under the allowable perturbations. We further propose to improve the robustness of the DL models by adversarial training (CARROT T ) with our proposed attack techniques. Our in-depth evaluations on three source code processing tasks (i.e., functionality classification, code clone detection, defect prediction) containing more than 3 million lines of code and the classic or SOTA DL models, including GRU, LSTM, ASTNN, LSCNN, TBCNN, CodeBERT, and CDLH, demonstrate the usefulness of our techniques for ❶ effective and efficient adversarial example detection, ❷ tight robustness estimation, and ❸ effective robustness enhancement.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.