Abstract
Pansharpening, a pivotal task in remote sensing, involves integrating low-resolution multispectral images with high-resolution panchromatic images to synthesize an image that is both high-resolution and retains multispectral information. These pansharpened images enhance precision in land cover classification, change detection, and environmental monitoring within remote sensing data analysis. While deep learning techniques have shown significant success in pansharpening, existing methods often face limitations in their evaluation, focusing on restricted satellite data sources, single scene types, and low-resolution images. This paper addresses this gap by introducing PanBench, a high-resolution multi-scene dataset containing all mainstream satellites and comprising 5898 pairs of samples. Each pair includes a four-channel (RGB + near-infrared) multispectral image of 256 × 256 pixels and a mono-channel panchromatic image of 1024 × 1024 pixels. To avoid irreversible loss of spectral information and achieve a high-fidelity synthesis, we propose a Cascaded Multiscale Fusion Network (CMFNet) for pansharpening. Multispectral images are progressively upsampled while panchromatic images are downsampled. Corresponding multispectral features and panchromatic features at the same scale are then fused in a cascaded manner to obtain more robust features. Extensive experiments validate the effectiveness of CMFNet.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.