Abstract

Stochastic gradient descent (SGD) is at the heart of large-scale distributed machine learning paradigms such as federated learning (FL). In these applications, the task of training high-dimensional weight vectors is distributed among several workers that exchange information over networks of limited bandwidth. While parallelization at such an immense scale helps to reduce the computational burden, it creates several other challenges: delays, asynchrony, and most importantly, a significant communication bottleneck. The popularity and success of SGD can be attributed in no small part to the fact that it is extremely robust to such deviations from ideal operating conditions. Inspired by these findings, we ask: Are common reinforcement learning (RL) algorithms also robust to similarly structured perturbations? Perhaps surprisingly, despite the recent surge of interest in multi-agent/federated RL, almost nothing is known about the above question. This paper collects some of our recent results in filling this void.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.