Abstract

To enable or allow for advanced manipulation scenarios in the envisaged future in robotic manipulation, the introduction of tactile or force-sensing technology is essential. This work introduces a study on a novel integration of fiber sensing elements inside the fingers of robotics grippers that allow obtaining accurate interaction forces during object manipulation. The study focuses on in-hand object motion and analyzes the objects’ dynamic behaviors during grasping or contact phases. The proposed approach classifies the behavior of the gripper-object interaction in real-time by looking at the measured forces in the orthogonal direction of the gripper’s fingers after a filtering stage. The methodology is validated theoretically and evaluated with real experiments using objects presenting different shapes, sizes, and surface properties.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call