Abstract
The increased complexity of contemporary constitutive models for soils requires a rigorous method to evaluate the effect of the large number of model parameters on the results. Ideally, the interaction effects between the individual parameters should also be quantified. This is achieved by combining a state-of-the-art global sensitivity method with a general purpose Finite Element Method (FEM) for geotechnics. The method is tested for the non-trivial example of coupled hydro-mechanical response of clay in oedometric compression. The results indicate that proposed method for rigorous sensitivity analysis provides a feasible, yet more powerful, alternative to the method commonly used by engineers, i.e. the sequences of one-factor-at-a-time (OFAT) trails.
Highlights
Advanced modelling of the soil behaviour is essential to address geotechnical design challenges
Necessary features are added to the models to improve the prediction accuracy and describe mechanisms of relevance
An advanced method for design of experiment was successfully implemented for boundary value level geotechnical Finite Element Methods (FEM) analyses
Summary
In order to appropriately address these difficulties, a more rigorous method should be applied for sensitivity analysis of model parameter interactions and their impact on the results. In this paper the designed experiment approach is combined with FEM to study the sensitivity of Creep-SCLAY1S using a variance-based method. In addition the boundary value analysis in FEM allows to study the effect of the hydraulic parameters, such as the horizontal and vertical hydraulic conductivity.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: IOP Conference Series: Earth and Environmental Science
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.