Abstract

The reproducibility of experiments has been a long standing impediment for further scientific progress. Computational methods have been instrumental in drug discovery efforts owing to its multifaceted utilization for data collection, pre-processing, analysis and inference. This article provides an in-depth coverage on the reproducibility of computational drug discovery. This review explores the following topics: (1) the current state-of-the-art on reproducible research, (2) research documentation (e.g. electronic laboratory notebook, Jupyter notebook, etc.), (3) science of reproducible research (i.e. comparison and contrast with related concepts as replicability, reusability and reliability), (4) model development in computational drug discovery, (5) computational issues on model development and deployment, (6) use case scenarios for streamlining the computational drug discovery protocol. In computational disciplines, it has become common practice to share data and programming codes used for numerical calculations as to not only facilitate reproducibility, but also to foster collaborations (i.e. to drive the project further by introducing new ideas, growing the data, augmenting the code, etc.). It is therefore inevitable that the field of computational drug design would adopt an open approach towards the collection, curation and sharing of data/code.

Highlights

  • Traditional drug discovery and development is well known to be time consuming and cost-intensive encompassing an average of 10 to 15 years until it is ready to reach the market with an estimated cost of 58.8 billion USD as of 2015 [1]

  • Discussion on the availability and current efforts undertaken in the field of computational drug discovery in regards to research reproducibility is provided in this review article

  • In efforts to steer clear of the potential pitfalls that may be lurking ahead, it is of great importance to grasp the current state-of-the-art of research reproducibility in computational drug discovery as to ensure that the underlying work is of high quality and that it is capable of withstanding reproduction of the described methodology by external research group

Read more

Summary

Introduction

Traditional drug discovery and development is well known to be time consuming and cost-intensive encompassing an average of 10 to 15 years until it is ready to reach the market with an estimated cost of 58.8 billion USD as of 2015 [1]. This process may help address many of the unmet needs in drug discovery and design such that the access to these data may help with the rapid identification of compounds to validate targets or profile diseases which will further encourage the development of new tools and predictive algorithms.

Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call