Abstract

Most bile duct (BDI) injuries during laparoscopic cholecystectomy (LC) occur due to visual misperception leading to the misinterpretation of anatomy. Deep learning (DL) models for surgical video analysis could, therefore, support visual tasks such as identifying critical view of safety (CVS). This study aims to develop a prediction model of CVS during LC. This aim is accomplished using a deep neural network integrated with a segmentation model that is capable of highlighting hepatocytic anatomy. Still images from LC videos were annotated with four hepatocystic landmarks of anatomy segmentation. A deep autoencoder neural network with U-Net to investigate accurate medical image segmentation was trained and tested using fivefold cross-validation. Accuracy, Loss, Intersection over Union (IoU), Precision, Recall, and Hausdorff Distance were computed to evaluate the model performance versus the annotated ground truth. A total of 1550 images from 200 LC videos were annotated. Mean IoU for segmentation was 74.65%. The proposed approach performed well for automatic hepatocytic landmarks identification with 92% accuracy and 93.9% precision and can segment challenging cases. DL, can potentially provide an intraoperative model for surgical video analysis and can be trained to guide surgeons toward reliable hepatocytic anatomy segmentation and produce selective video documentation of this safety step of LC.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.