Abstract

Advances in neural interfaces have demonstrated remarkable results in the direction of replacing and restoring lost sensorimotor function in human patients. Noninvasive brain-computer interfaces (BCIs) are popular due to considerable advantages including simplicity, safety, and low cost, while recent advances aim at improving past technological and neurophysiological limitations. Taking into account the neurophysiological alterations of disabled individuals, investigating brain connectivity features for implementation of BCI control holds special importance. Off-the-shelf BCI systems are based on fast, reproducible detection of mental activity and can be implemented in neurorobotic applications. Moreover, social Human-Robot Interaction (HRI) is increasingly important in rehabilitation robotics development. In this paper, we present our progress and goals towards developing off-the-shelf BCI-controlled anthropomorphic robotic arms for assistive technologies and rehabilitation applications. We account for robotics development, BCI implementation, and qualitative assessment of HRI characteristics of the system. Furthermore, we present two illustrative experimental applications of the BCI-controlled arms, a study of motor imagery modalities on healthy individuals' BCI performance, and a pilot investigation on spinal cord injured patients' BCI control and brain connectivity. We discuss strengths and limitations of our design and propose further steps on development and neurophysiological study, including implementation of connectivity features as BCI modality.

Highlights

  • Advances in neural interfaces including implantable neural prosthetics and brain-computer interfaces (BCIs) have recently demonstrated remarkable results in the direction of replacing [1, 2] or even restoring [3, 4] long-lost sensorimotor function in human patients

  • We subsequently report on the implementation of the BCI control module using an off-the-shelf EEG-BCI system and the development of BCI-robotics communication; we present two illustrative experimental applications of the BCIcontrolled robotic arms

  • In certain movements excellent performance was achieved and this finding was not correlated to intrinsic difficulty of any movement [53]

Read more

Summary

Introduction

Advances in neural interfaces including implantable neural prosthetics and brain-computer interfaces (BCIs) have recently demonstrated remarkable results in the direction of replacing [1, 2] or even restoring [3, 4] long-lost sensorimotor function in human patients. SCI in particular results in disconnection of afferent and efferent neural pathways and can cause permanent sensorimotor disability, often without any cognitive alteration, which negatively impacts the lives of the victims and their families [6]. Chronic SCI has been demonstrated to induce neurophysiological changes in brain structure [7] and function, both at resting state [8] and during sensorimotor process [9].

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call