Abstract

Abstraction and refinement offer a stepwise development approach to managing complexity in system design. Based on our previous work that extends Event-B models with high level real-time trigger-response properties, this paper presents refinement semantics of timed systems using behavioral traces. Forward simulation, which is a proof technique for refinement, is used to verify the consistency between different refinement levels. To prove refinement of trace semantics, we construct intermediate traces from concrete traces with a mapping function and prove the intermediate trace without stuttering events and states are abstract traces. Fairness assumptions, relative deadlock freedom, and conditional convergence are adopted in refinement steps to eliminate Zeno behavior in timed models. Based on the semantics, we develop refinement rules and strategies to perform refinement on timed models and refine real-time trigger-response properties into sequential or alternative sub-timing properties with proofs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.