Abstract
This paper studies the critical problem of maximizing the aggregate data utility under budget constraint in mobile crowd sourced sensing. This problem is particularly challenging given the redundancy in sensing data, self-interested and strategic user behaviors, and private cost information of smartphones. Most of existing approaches do not consider the important performance objective - maximizing the redundancy-aware data utility of sensing data collected from smartphones. Furthermore, they do not consider the practical constraint on budget. In this paper, we propose a combinatorial auction mechanism based on a reverse auction framework. It consists of an approximation algorithm for winning bids determination and a critical payment scheme. The approximation algorithm guarantees a constant approximation ratio at polynomial-time complexity. The critical payment scheme guarantees truthful bidding. The rigid theoretical analysis demonstrates that our mechanism achieves truthfulness, individual rationality, computational efficiency, and budget feasibility. Extensive simulations show that the proposed mechanism produces high redundancy-aware data utility.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.