Abstract
For successful physical human-robot interaction, the capability of a robot to understand its environment is imperative. More importantly, the robot should extract from the human operator as much information as possible. A reliable 3D skeleton extraction is essential for a robot to predict the intentions of the operator while s/he moves toward the robot or performs a meaningful gesture. For this purpose, we have integrated a time-of-flight depth camera with a state-of-the-art 2D skeleton extraction library namely Openpose, to obtain 3D skeletal joint coordinates reliably. We have also developed a robust and rotation invariant (in the coronal plane)hand gesture detector using a convolutional neural network. At run time (after having been trained)the detector does not require any pre-processing of the hand images. A complete pipeline for skeleton extraction and hand gesture recognition is developed and employed for real-time physical human-robot interaction, demonstrating the promising capability of the designed framework. This work establishes a firm basis and will be extended for the development of intelligent human intention detection in physical human-robot interaction scenarios, to efficiently recognize a variety of static as well as dynamic gestures.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.