Abstract

Robotic surgery has been recognised in the past few years to have immense potential. Understanding the biomechanics of surgical procedures is central to robotic surgery. Needle insertion into soft tissues is a common surgical procedure but the biomechanics of needle insertion is poorly understood. We developed a computational biomechanical model to understand the mechanics of needle insertion into the brain tissue. The brain tissue is considered as a single phase continuum undergoing finite deformations. A non-linear constitutive model of the brain tissue is used. Precise geometrical model of the brain is obtained from MRI images and the brain mesh is created. The brain computational model is verified by comparing with previously published experimental results for porcine brain indentation. The reaction forces acting on the needle during insertion are obtained using fully non-linear, explicit Finite Element procedures in time domain.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call