Abstract
Many supervised methods have been proposed to infer the particular activities of the inhabitants from a variety of sensors attached in the home. Current activity recognition systems either assume that the sensor stream has been presegmented or use a sliding window for activity segmentation. This makes real-time activity recognition task difficult due to the presence of temporal gaps between successive sensor activations. In this paper, we propose a method based on a set of hidden Markov models that can simultaneously solve the problem of activity segmentation and recognition on streaming sensor data without relying on any sliding window methods. We demonstrate our algorithm on sensor data obtained from two publicly available smart homes datasets.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal of Advanced Intelligence Paradigms
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.