Abstract

We demonstrate the use of highly parallel graphics processing units (GPUs) to accelerate the superposition/convolution (S/C) algorithm to interactive rates while reducing the number of approximations. S/C first transports the incident fluence to compute the total energy released per unit mass (TERMA) grid. Dose is then calculated by superimposing the dose deposition kernel at each point in the TERMA grid and summing the contributions to the surrounding voxels. The TERMA algorithm was enhanced with physically correct multi-spectral attenuation and a novel inverse formulation for increased performance, accuracy and simplicity. Dose deposition utilized a tilted poly-energetic inverse cumulative–cumulative kernel, with the novel option of using volumetric mip-maps to approximate solid angle ray casting. Exact radiological path ray casting decreased discretization errors. We achieved a speedup of 34 x–98 x over a highly optimized CPU implementation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.