Abstract
PurposeInductive charging systems for electrically powered cars produce a magneto-quasistatic field and organism in the vicinity might be exposed to that field. Magneto-quasistatic fields induce electric fields in the human body that should not exceed limits given by the International Commission of Non-Ionizing Radiation protection (ICNIRP) to ensure that no harm is done to the human body. As these electric fields cannot be measured directly, they need to be derived from the measured magnetic flux densities. To get an almost real-time estimation of the harmfulness of the magnetic flux density to the human body, the electric field needs to be calculated within a minimal computing time. The purpose of this study is to identify fast linear equations solver for the discrete Poisson system of the Co-Simulation Scalar Potential Finite Difference scheme on different graphics processing unit systems.Design/methodology/approachThe determination of the exposure requires a fast linear equations solver for the discrete Poisson system of the Co-Simulation Scalar Potential Finite Difference (Co-Sim. SPFD) scheme. Here, the use of the AmgX library on NVIDIA GPUs is presented for this task.FindingsUsing the AmgX library enables solving the equation system resulting from an ICNIRP recommended human voxel model resolution of 2 mm in less than 0.5 s on a single NVIDIA Tesla V100 GPU.Originality/valueThis work is one essential advancement to determine the exposure of humans from wireless charging system in near real-time from in situ magnetic flux density measurements.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: COMPEL - The international journal for computation and mathematics in electrical and electronic engineering
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.