Abstract

Optical trapping provides a way to isolate, manipulate, and probe a wide range of microscopic particles. Moreover, as particle dynamics are strongly affected by their shape and composition, optical tweezers can also be used to identify and classify particles, paving the way for multiple applications such as intelligent microfluidic devices for personalized medicine purposes, or integrated sensing for bioengineering. In this work, we explore the possibility of using properties of the forward scattered radiation of the optical trapping beam to analyze properties of the trapped specimen and deploy an autonomous classification algorithm. For this purpose, we process the signal in the Fourier domain and apply a dimensionality reduction technique using UMAP algorithms, before using the reduced number of features to feed standard machine learning algorithms such as K-nearest neighbors or random forests. Using a stratified 5-fold cross-validation procedure, our results show that the implemented classification strategy allows the identification of particle material with accuracies up to 80%, demonstrating the potential of using signal processing techniques to probe properties of optical trapped particles based on the forward scattered light. Furthermore, preliminary results of an autonomous implementation in a standard experimental optical tweezers setup show similar differentiation capabilities for real-time applications, thus opening some opportunities towards technological applications such as intelligent microfluidic devices and solutions for biochemical and biophysical sensing.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call