Abstract

Metal-organic frameworks are promising materials for the capture of carbon dioxide. Finding the best metal-organic frameworks from the vast number of possibilities could be greatly accelerated by efficient computational screening techniques. We have previously reported an effective screening protocol for predicting carbon dioxide adsorption performance in metal-organic frameworks that uses grand canonical Monte Carlo simulations of gas adsorption. In the model, molecules interact via van der Waals and electrostatic interactions with each other and the framework. However, the method requires single-point quantum mechanics calculations for the estimation of atomic partial charges. In this study we investigate the feasibility of a modified protocol that bypasses the computationally expensive quantum mechanics calculations by applying instead the charge equilibration method. We compare the results of both protocols directly on fourteen metal-organic frameworks and conclude that the new protocol is sufficiently accurate for screening purposes and is significantly faster.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.