Abstract

Contact stylus-based surface profilometry is capable of topography measurement whilst being independent of the physical, electrical and optical properties of the materials under test, and has therefore become an indispensable tool for dimensional measurement of transparent specimens. However, large measurement deviations will appear when soft specimens, especially specimens made of polymers, are measured by contact stylus profilometry. In this paper the surface deformation behaviour of two polymers for molding and one photoresist, i.e. Ormocomp, Ormoclad and SU-8, under different tactile measurement conditions have been experimentally investigated. An empirical analytical model is hereby proposed for the prediction of surface deformation of soft specimens under tactile (sliding) contact. Preliminary experimental results demonstrate that the proposed five-parameter model is applicable for describing the deformation behaviour of these thermoplastic materials under the scanning speed ranging from 2 to 200 μm s−1 and the probing force varying from 5 to 500 μN. In addition, thanks to quantitative topographical measurements of the layer thickness of the aforementioned photoresists, the scratch behaviour and the time-dependent mechanical properties of these materials have also been experimentally determined.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.