Abstract

The total cell resistances of three Risø DTU solid oxide fuel cells (SOFCs) were broken down into individual contributions, by the combined use of electrochemical impedance spectroscopy (EIS), and complex non-linear least squares fitting (CNLS). Information on the number of contributing processes, frequency regions, and thermal behaviour, was obtained from symmetric cell studies of individual electrodes. The frequency regions dominated by electrode specific processes in the full cells were assessed by systematic changes of temperature and/or partial pressure of reactant gases on both electrodes. Based on the combined information, an equivalent circuit consisting of a series resistance (Rs) and five (RQ) elements was found suitable to describe the polarisation resistance of all tested cells. The breakdown process also allowed the assessment of limitations, and possible simplifications. The proposed electrochemical analysis correlated well with the exhibited microstructural features of the cells, which were produced with different compositions and/or production parameters.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.