Abstract

The production of low-cost and high-quality carbon fibers (CFs) from biorenewable lignin precursors has been of worldwide interest for decades. Although numerous works have been reported and the proposed “1.72 GPa/172 GPa” target set by the Department of Energy (DOE) has been closely met in a few studies, most lignin-based CFs (LCFs) have poor strength properties compared to industrial PAN (polyacrylonitrile)-based CFs. The production of LCFs involves several steps, and the final quality of LCFs is governed by both lignin's properties and the manufacturing processes. Therefore, understanding the key factors of producing high quality LCF is of high importance. In this review, we firstly outlined several lignin's properties (e.g., impurities, thermal properties, molecular structure) that may play important role in determining its processability and suitability as carbon fiber precursor. Secondly, conversion strategies include spinning, stabilization and carbonization, and corresponding parameters influencing the final quality of LCF are comprehensively analyzed. Last, additional characterization methods are proposed as a means to facilitate analyzing of lignin and LCF. This review attempts to provide insights towards high-quality LCF production from both material and manufacturing aspects.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call