Abstract
Supervised deep learning approaches provide state-of-the-art performance on medical image classification tasks for disease screening. However, these methods require large labeled datasets that involve resource-intensive expert annotation. Further, disease screening applications have low prevalence of abnormal samples; this class imbalance makes the task more akin to anomaly detection. While the machine learning community has proposed unsupervised deep learning methods for anomaly detection, they have yet to be characterized on medical images where normal vs. anomaly distinctions may be more subtle and variable. In this work, we characterize existing unsupervised anomaly detection methods on retinal fundus images, and find that they require significant fine tuning and offer unsatisfactory performance. We thus propose an efficient and effective transfer-learning based approach for unsupervised anomaly detection. Our method employs a deep convolutional neural network trained on ImageNet as a feature extractor, and subsequently feeds the learned feature representations into an existing unsupervised anomaly detection method. We show that our approach significantly outperforms baselines on two natural image datasets and two retinal fundus image datasets, all with minimal fine-tuning. We further show the ability to leverage very small numbers of labelled anomalies to improve performance. Our work establishes a strong unsupervised baseline for image-based anomaly detection, alongside a flexible and scalable approach for screening applications.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.