Abstract

BackgroundNucleus or cell detection is a fundamental task in microscopy image analysis and supports many other quantitative studies such as object counting, segmentation, tracking, etc. Deep neural networks are emerging as a powerful tool for biomedical image computing; in particular, convolutional neural networks have been widely applied to nucleus/cell detection in microscopy images. However, almost all models are tailored for specific datasets and their applicability to other microscopy image data remains unknown. Some existing studies casually learn and evaluate deep neural networks on multiple microscopy datasets, but there are still several critical, open questions to be addressed.ResultsWe analyze the applicability of deep models specifically for nucleus detection across a wide variety of microscopy image data. More specifically, we present a fully convolutional network-based regression model and extensively evaluate it on large-scale digital pathology and microscopy image datasets, which consist of 23 organs (or cancer diseases) and come from multiple institutions. We demonstrate that for a specific target dataset, training with images from the same types of organs might be usually necessary for nucleus detection. Although the images can be visually similar due to the same staining technique and imaging protocol, deep models learned with images from different organs might not deliver desirable results and would require model fine-tuning to be on a par with those trained with target data. We also observe that training with a mixture of target and other/non-target data does not always mean a higher accuracy of nucleus detection, and it might require proper data manipulation during model training to achieve good performance.ConclusionsWe conduct a systematic case study on deep models for nucleus detection in a wide variety of microscopy images, aiming to address several important but previously understudied questions. We present and extensively evaluate an end-to-end, pixel-to-pixel fully convolutional regression network and report a few significant findings, some of which might have not been reported in previous studies. The model performance analysis and observations would be helpful to nucleus detection in microscopy images.

Highlights

  • Nucleus or cell detection is a fundamental task in microscopy image analysis and supports many other quantitative studies such as object counting, segmentation, tracking, etc

  • Deep neural network (DNN) have been applied to nucleus/cell detection in different types of microscopy images, leading to improved performance compared to other methods [13]

  • Supervised models like convolutional neural networks (CNNs), which are the most widely used for object detection in microscopy image analysis, need massive individual object annotation that is more expensive to obtain

Read more

Summary

Introduction

Nucleus or cell detection is a fundamental task in microscopy image analysis and supports many other quantitative studies such as object counting, segmentation, tracking, etc. Deep neural networks are emerging as a powerful tool for biomedical image computing; in particular, convolutional neural networks have been widely applied to nucleus/cell detection in microscopy images. Instead of relying on non-trivial image representation engineering, DNNs directly deal with raw image data and automatically learns the representations for different tasks. DNNs have been applied to nucleus/cell detection in different types of microscopy images, leading to improved performance compared to other methods [13]. Supervised models like convolutional neural networks (CNNs), which are the most widely used for object detection in microscopy image analysis, need massive individual object annotation that is more expensive to obtain. Even though a sufficient number of annotated images are available on one specific dataset, it is currently common to annotate new target training images, i.e., label the locations of individual nuclei or cells, and re-train the models when applying them to other datasets

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call