Abstract

The rise of multi- and many-core architectures also gave birth to a plethora of new parallel programming models. Among these, the open industry standard OpenCL addresses this heterogeneity of programming environments by providing a unified programming framework. The price to pay, however, is that OpenCL requires additional low-level boilerplate code, when compared to vendor-specific solutions, even if only simple operations are to be performed. Also, the unified programming framework does not automatically provide any guarantees on performance portability of a particular implementation. Thus, device-specific compute kernels are still required for obtaining good performance across di_erent hardware architectures.We address both, the issue of programmability and portable performance, in this work: On the one hand, a high-level programming interface for linear algebra routines allows for the convenient specification of the operations of interest without having to go into the details of the underlying hardware. On the other hand, we discuss the underlying generator for device-specific OpenCL kernels at runtime, which is supplemented by an auto-tuning framework for portable performance as well as with work partitioning and task scheduling for multiple devices.Our benchmark results show portable performance across hardware from major vendors. In all cases, at least 75 percent of the respective vendortuned library was obtained, while in some cases we even outperformed the reference. We further demonstrate the convenient and e_cient use of our high-level interface in a multi-device setting with good scalability.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.