Abstract

Transesophageal echocardiography (TEE) is routinely used to provide important qualitative and quantitative information regarding mitral regurgitation. Contemporary planning of surgical mitral valve repair, however, still relies heavily upon subjective predictions based on experience and intuition. While patient-specific mitral valve modeling holds promise, its effectiveness is limited by assumptions that must be made about constitutive material properties. In this paper, we propose and develop a semi-automated framework that combines machine learning image analysis with geometrical and biomechanical models to build a patient-specific mitral valve representation that incorporates image-derived material properties. We use our computational framework, along with 3D TEE images of the open and closed mitral valve, to estimate values for chordae rest lengths and leaflet material properties. These parameters are initialized using generic values and optimized to match the visualized deformation of mitral valve geometry between the open and closed states. Optimization is achieved by minimizing the summed Euclidean distances between the estimated and image-derived closed mitral valve geometry. The spatially varying material parameters of the mitral leaflets are estimated using an extended Kalman filter to take advantage of the temporal information available from TEE. This semi-automated and patient-specific modeling framework was tested on 15 TEE image acquisitions from 14 patients. Simulated mitral valve closures yielded average errors (measured by point-to-point Euclidean distances) of 1.86 ± 1.24mm. The estimated material parameters suggest that the anterior leaflet is stiffer than the posterior leaflet and that these properties vary between individuals, consistent with experimental observations described in the literature.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.