Abstract

BackgroundPrevious research shows that the flow dynamics in the left ventricle (LV) reveal important information about cardiac health. This information can be used in early diagnosis of patients with potential heart problems. The current study introduces a patient-specific cardiovascular-modelling system (CMS) which simulates the flow dynamics in the LV to facilitate physicians in early diagnosis of patients before heart failure.MethodsThe proposed system will identify possible disease conditions and facilitates early diagnosis through hybrid computational fluid dynamics (CFD) simulation and time-resolved magnetic resonance imaging (4-D MRI). The simulation is based on the 3-D heart model, which can simultaneously compute fluid and elastic boundary motions using the immersed boundary method. At this preliminary stage, the 4-D MRI is used to provide an appropriate comparison. This allows flexible investigation of the flow features in the ventricles and their responses.ResultsThe results simulate various flow rates and kinetic energy in the diastole and systole phases, demonstrating the feasibility of capturing some of the important characteristics of the heart during different phases. However, some discrepancies exist in the pulmonary vein and aorta flow rate between the numerical and experimental data. Further studies are essential to investigate and solve the remaining problems before using the data in clinical diagnostics.ConclusionsThe results show that by using a simple reservoir pressure boundary condition (RPBC), we are able to capture some essential variations found in the clinical data. Our approach establishes a first-step framework of a practical patient-specific CMS, which comprises a 3-D CFD model (without involving actual hemodynamic data yet) to simulate the heart and the 4-D PC-MRI system. At this stage, the 4-D PC-MRI system is used for verification purpose rather than input. This brings us closer to our goal of developing a practical patient-specific CMS, which will be pursued next. We anticipate that in the future, this hybrid system can potentially identify possible disease conditions in LV through comprehensive analysis and facilitates physicians in early diagnosis of probable cardiac problems.

Highlights

  • Previous research shows that the flow dynamics in the left ventricle (LV) reveal important information about cardiac health

  • This study introduces a cardiovascular modelling system (CMS) which may detect possible disease conditions and facilitate early diagnosis prior to heart failure, using hybrid computational fluid dynamics (CFD) simulation and time-resolved magnetic resonance imaging (MRI)

  • Between T = 0.0 and 0.25

Read more

Summary

Introduction

Previous research shows that the flow dynamics in the left ventricle (LV) reveal important information about cardiac health This information can be used in early diagnosis of patients with potential heart problems. Mcqueen and Peskin [7] conducted computational studies to investigate a natural or prosthetic mitral valve as early as 1982, and later developed a successful 3-D heart simulation based on idealized hemodynamic conditions [8]. They have used the immersed boundary method (IBM) to accommodate complex geometries, moving wall, and fluid-tissue interaction. The immersed boundary does not remain a “sharp” interface, reducing accuracy

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call