Abstract

Anti-wear (AW) additives and friction modifiers (FMs) and their interactions in lubricants are critical to tribological performance. This research investigates the compatibility and synergism of three oil-soluble alkylamine-phosphate ionic liquids with friction modifiers, organomolybdenum compounds. Three proton-based ionic liquids (PILs) were synthesized using a simple, low-cost, and unadulterated procedure as well as the chain lengths of the PILs affected the effectiveness of friction reduction and anti-wear. For example, the effect of a short-chain PIL alone as an additive on friction and wear behavior was not significant, whereas a long-chain PIL was more effective. In addition, PILs appeared to be able to coexist with organic molybdenum compounds and worked synergistically with dialkyl dithiophosphate oxygen molybdenum (MoDDP) to produce a sustained low coefficient of boundary friction (the coefficient of friction approaching 0.042). We proposed a three-stage tribochemical process to explain this interaction of PILs + MoDDP with contact surfaces to form physically adsorbed friction-reducing films and chemically reactive wear-protective films. This study reveals the compatibility and synergistic effects of two common lubricant components, which can be used to guide lubricant development in the future.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call