Abstract

With the ongoing fifth-generation cellular network (5G) deployment, electromagnetic field exposure has become a critical concern. However, measurements are scarce, and accurate electromagnetic field reconstruction in a geographic region remains challenging. This work proposes a conditional generative adversarial network to address this issue. The main objective is to reconstruct the electromagnetic field exposure map accurately according to the environment's topology from a few sensors located in an outdoor urban environment. The model is trained to learn and estimate the propagation characteristics of the electromagnetic field according to the topology of a given environment. In addition, the conditional generative adversarial network-based electromagnetic field mapping is compared with simple kriging. Results show that the proposed method produces accurate estimates and is a promising solution for exposure map reconstruction.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.